1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
| import csv import time import pandas as pd import numpy as np from tqdm import tqdm from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import cosine_similarity
class MyRecommend: def __init__(self, movie_data_path, rating_data_path, tags_data_path): self.movie_data = pd.read_csv(movie_data_path) self.movie_data['genres'] = self.movie_data["genres"].fillna("") self.rating_data = pd.read_csv(rating_data_path) self.tags_data = pd.read_csv(tags_data_path) self.movie_origin_source = {} self.user_average = {} self.movie_average = {}
def init_similarity(self): user_ids = self.rating_data["userId"].drop_duplicates().sort_values() movie_ids = self.rating_data["movieId"].drop_duplicates().sort_values() i = 0 for movie_id in movie_ids: self.movie_origin_source[movie_id] = i i += 1
all_user_matrix = [] zeros = [] for x in range(len(movie_ids)): zeros.append(0) for user_id in tqdm(user_ids): tmp = zeros.copy() seen_movies = self.rating_data[self.rating_data["userId"] == user_id] seen_movies_ids = seen_movies["movieId"] for seen_movies_id in seen_movies_ids: position = self.movie_origin_source[seen_movies_id] tmp[position] = seen_movies[seen_movies["movieId"] == seen_movies_id]["rating"].values[0] average = np.mean(tmp) self.user_average[user_id] = average for i in range(len(tmp)): tmp[i] -= average all_user_matrix.append(tmp)
all_user_df = pd.DataFrame(all_user_matrix) all_user_matrix.clear() self.all_user_similarity = cosine_similarity(all_user_df.values)
all_movie_matrix = [] zeros = [] for x in range(len(user_ids)): zeros.append(0) for movie_id in tqdm(movie_ids): tmp = zeros.copy() seen_users = self.rating_data[self.rating_data["movieId"] == movie_id] seen_users_ids = seen_users["userId"] for seen_user_id in seen_users_ids: tmp[seen_user_id - 1] = seen_users[seen_users["userId"] == seen_user_id]["rating"].values[0] average = np.mean(tmp) self.movie_average[movie_id] = average for i in range(len(tmp)): tmp[i] -= average all_movie_matrix.append(tmp)
all_movie_df = pd.DataFrame(all_movie_matrix) all_movie_matrix.clear() self.all_movie_similarity = cosine_similarity(all_movie_df.values)
def user_based_one(self, user_id, movie_id, is_seen=True): """ 用户-用户协同过滤 预测 user_id 会给 movie_id 的评分 :param is_seen: :param user_id: :param movie_id: :return: """ user_ratings = self.rating_data[self.rating_data["userId"] == user_id]
if len(user_ratings[user_ratings["movieId"] == movie_id].values) and is_seen: return 0.0
seen_user_ids = self.rating_data[self.rating_data["movieId"] == movie_id]["userId"] similarity_users = [] weight_similarity = 0.0 total_similarity = 0.0
for seen_user_id in seen_user_ids: seen_user_ratings = self.rating_data[self.rating_data["userId"] == seen_user_id]
similarity = self.all_user_similarity[seen_user_id - 1][user_id - 1] similarity_user = [seen_user_id, similarity] similarity_users.append(similarity_user)
weight_similarity += similarity * \ seen_user_ratings[seen_user_ratings["movieId"] == movie_id]["rating"].values[0] total_similarity += similarity if total_similarity == 0.0 or total_similarity == 0: return 0.0 return weight_similarity / total_similarity + self.user_average[user_id]
def movie_based_one(self, user_id, movie_id, is_seen=True): """ 物品-物品协同过滤 预测 user_id 会给 movie_id 的评分 :param is_seen: :param user_id: :param movie_id: :return: """ movie_ratings = self.rating_data[self.rating_data["movieId"] == movie_id]
if len(movie_ratings[movie_ratings["userId"] == user_id].values) and is_seen: return 0.0
seen_movie_ids = self.rating_data[self.rating_data["userId"] == user_id]["movieId"]
similarity_movies = [] weight_similarity = 0.0 total_similarity = 0.0
for seen_movie_id in seen_movie_ids: seen_movie_ratings = self.rating_data[self.rating_data["movieId"] == seen_movie_id]
try: similarity = self.all_movie_similarity[self.movie_origin_source[seen_movie_id]][ self.movie_origin_source[movie_id]] except Exception as e: similarity = 0.0 similarity_movie = [seen_movie_id, similarity] similarity_movies.append(similarity_movie)
weight_similarity += similarity * \ seen_movie_ratings[seen_movie_ratings["userId"] == user_id]["rating"].values[0] total_similarity += similarity result = weight_similarity / total_similarity if(movie_id not in self.movie_average): return result return result + self.movie_average[movie_id]
def content_based_predict(self, movie_ids, seen_movie_ids, n=10): """ 找到和 movie_id 相似的电影 :param movie_ids: :param seen_movie_ids: 已经看过的电影 :param n: 推荐个数 :return: """ tfidf = TfidfVectorizer(stop_words="english") tfidf_matrix = tfidf.fit_transform(self.movie_data["genres"]) cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
indices = pd.Series(self.movie_data.index, index=self.movie_data["movieId"]).drop_duplicates()
similarities = {} for movie_id in movie_ids: idx = indices[movie_id] similarity = list(enumerate(cosine_sim[idx])) similarity = sorted(similarity, key=lambda x: x[1], reverse=True) similarity = similarity[1: 1 + int(n / 2)] for s in similarity: if s[0] in similarities or s[0] in seen_movie_ids: continue else: similarities[s[0]] = s[1] recommend_ids = list(similarities.keys()) recommend_ids.sort(key=lambda x: similarities[x], reverse=True) movie_indices = recommend_ids[:n] recommends = self.movie_data["movieId"].iloc[movie_indices] return recommends
def predict(self, user_ids, n=10, least_rating=3.0): """ 联合推荐,先通过内容推荐来缩小范围,然后使用协同过滤 :param user_ids: 用户范围 :param n:内容过滤输出为前10 :param least_rating:最低可以接受的评分 :return: """ users_result = {} for user_id in tqdm(user_ids): result = [] seen_movie_ids = self.rating_data[self.rating_data["userId"] == user_id]["movieId"].drop_duplicates() love_movie_ids = self.rating_data[self.rating_data["userId"] == user_id].sort_values(by=["rating"]).head(n)[ "movieId"].drop_duplicates() recommend_ids = self.content_based_predict(love_movie_ids, seen_movie_ids, n) for recommend_id in recommend_ids: result.append(recommend_id) recommend_scores = [] for recommend_id in recommend_ids: user_based_score = self.user_based_one(user_id, recommend_id) movie_based_score = self.movie_based_one(user_id, recommend_id) if user_based_score < least_rating and movie_based_score < least_rating: continue recommend_scores.append([recommend_id, user_based_score, movie_based_score]) recommend_scores.sort(key=lambda x: x[1] + x[2]) if (len(recommend_scores) < 2): users_result[user_id] = [recommend_id[0] for recommend_id in recommend_scores] else: users_result[user_id] = [recommend_id[0] for recommend_id in recommend_scores[:2]]
with open("result/movie" + str(time.time()) + ".csv", "w", encoding="utf-8", newline="") as f: writer = csv.writer(f) writer.writerow(["userId", "movieId"]) for user_id in users_result.keys(): for recommend_id in users_result[user_id]: writer.writerow([user_id, recommend_id])
def evaluate(self, user_ids, edges): """ 评估效果,以一个用户为例,检验协同过滤算法 :param user_ids: :param edges: 边界 :return: """ valid = {} for edge in edges: valid[edge] = 0 total = 0 for user_id in user_ids: seen_movies = self.rating_data[self.rating_data["userId"] == user_id] seen_movie_ids = seen_movies["movieId"] total += len(seen_movie_ids) for seen_movie_id in tqdm(seen_movie_ids): real_score = seen_movies[seen_movies["movieId"] == seen_movie_id]["rating"].values[0] user_based_score = self.user_based_one(user_id, seen_movie_id, False) movie_based_score = self.movie_based_one(user_id, seen_movie_id, False) for edge in edges: if (abs(real_score - user_based_score) <= edge or abs(real_score - movie_based_score) <= edge): valid[edge] += 1 for edge in edges: print("上下浮动范围为" + str(edge) + "时的准确率为" + str(valid[edge] / total * 100) + "%")
if __name__ == '__main__': myRecommend = MyRecommend("./ml-latest-small/movies.csv", "./ml-latest-small/ratings.csv", "./ml-latest-small/tags.csv") myRecommend.init_similarity() print(myRecommend.user_based_one(1, 1, False)) myRecommend.predict(range(611)) myRecommend.evaluate(range(5), [0.25, 0.5, 0.75, 1])
|